Examples of installation

	Industry	Application	Gas volume (Nm ³ /hr)	Gas temperature (in degrees C) at Inlet> Outlet	Scope of supply	
(1)	Steel	Converter flue-gas cooling	210,000	530> 200	Spray nozzles, Valve stands, Control boxes	
(2)	Steel	Converter flue-gas cooling	480,000	600> 490	Spray nozzles, Valve stands, Control boxes	
(3)	Steel	Cooling of flue gas from molten iron pretreatment	150,000	700> 200	Spray nozzles, Valve stands, Control boxes	
(4)	Steel	Cooling of melting furnace flue-gas	100,000	600> 400	Spray nozzles, Valve stands, Control boxes	
(5)	Steel	Cooling of melting furnace flue-gas	120,000	400> 200	Complete set of gas cooling tower	
(6)	Cement	Stabilizer	163,000	340> 130	Spray nozzles	
(7)	Cement	Cyclone	157,500	870> 800	Spray nozzles, Valve stands	
(8)	Industrial waste incinerator	Flue gas cooling	45,000	950> 200	Complete set of gas cooling tower	

(5) Gas volume: 120,000 m³N/hr Inlet temperature: 400 deg. C Outlet temperature: 200 deg. C

Installed in March 2011 with tower, spray nozzles, automated dust discharger, control box, and valve stand.

(8) Gas volume: 45,000 m³N/hr Inlet temperature: 950 deg. C Outlet temperature: 200 deg. C

Installed in October 2012 with tower, spray nozzles, manual dust discharger, control box, and valve stand.

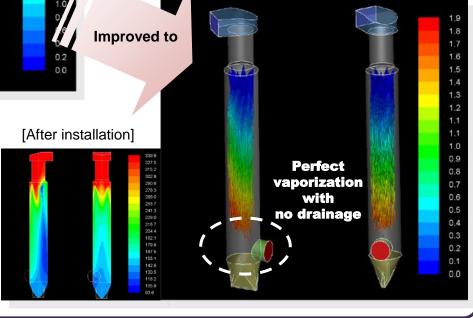
For details or inquiries please feel free to contact a sales office or mail us at overseas@kirinoikeuchi.co.jp.

Headquarters

Daiichi Kyogyo Bldg., 1-15-15, Awaza, Nishi-ku, Osaka 550-0011, Japan Tel: 81-6-6538-4015 Fax: 81-6-6538-4022 Email: overseas@kirinoikeuchi.co.jp URL: http://www.kirinoikeuchi.co.jp/eng/

We have our branches and affiliate companies around the world. Please see our website for the nearest contact: https://www.kirinoikeuchi.co.jp/eng/contact/

Flue Gas Cooling System


Of
To treat increasing waste containing
To improve unvaporized water and
For precision control of gas tempera

Example of an improvement on the existing gas cooling tower by computational fluid dynamics (CFD) and analysis of nozzles. Flue gas volume: 163,000 m³N/hr

Gas temperature at inlet: 340 degrees C at outlet: 130 degrees C

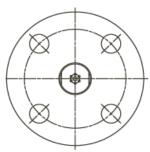
Spray nozzles for rectification installed in January 2010.

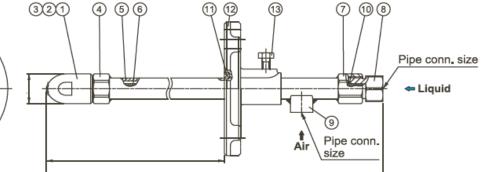

ffered by IKEUCHI, "The Fog Engineers"

- higher calorific value
- dust-adhesion troubles
- ature at outlet

Optimization

Water droplets sprayed inside a gas cooling tower are required to perfectly vaporize without wetting the interior wall. Based on its many years of experience and proven results, IKEUCHI, "The Fog Engineers", offers the optimal spray nozzles and nozzle layout for each site, meeting requirements for spray flow rate, spray droplet size, and spray angle.

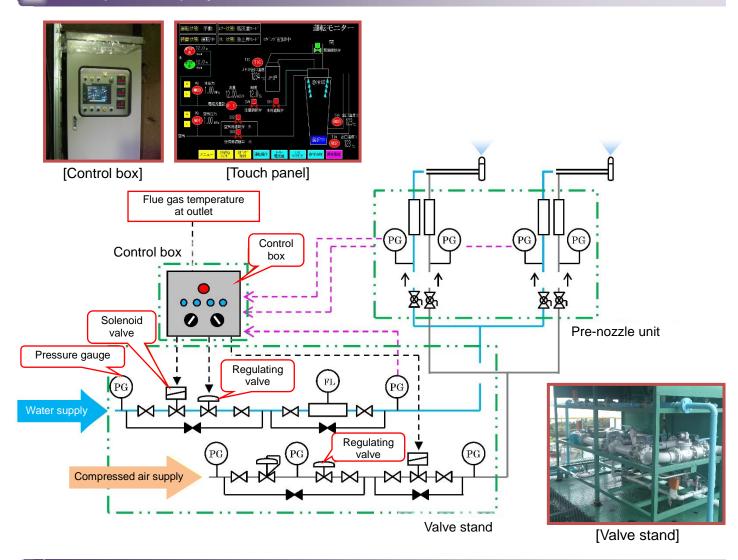

Fine fog nozzles / GSIM II series



- GSIMII series nozzle produce a large volume of fine atomization with a low consumption of compressed air, having very low air-water ratios.
- Pneumatic spray nozzle with spray capacity of 30–1,000 L/hr.
- Energy-saving design—mean droplet diameter of 50 μm and a maximum droplet diameter of 150 μm^{*1} at an **air-water ratio of 130**.
- Large turn-down ratio.
- Available in spray angles of 60° and 20°, in six spray capacity types—12 variety in total.
- Easy maintenance with simple structure and compact body.

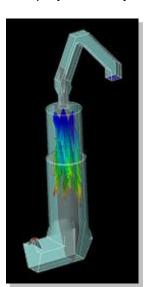
*1) Droplet diameter measured by laser Doppler method

Drawing

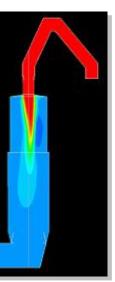


Components and materials

No.	Components	Standard materials	No.	Components	Standard materials
1	Nozzle tip	S316L	\bigcirc	Joint	S304
2	Nozzle core	S316L	8	Liquid socket	S304
3	Whirler	S316L equivalent	9	Air socket	S304
4	Nozzle adaptor	S316L	10	O-ring	FKM
5	Outer pipe (for air)	S316L	1	Packing	Metal wire reinforced AES wool
6	Inner pipe (for liquid)	S304	12	Flange	SCS13 (S304)
			(13)	Bolt	S304


Example of a spray control flow

Optimal spray nozzle layout


A wide range of conditions depending on a site must be considered when it comes to gas cooling. If one hopes to properly model cooling mechanisms in all of these conditions, high-precision nozzle mechanism modeling alone is not enough. In addition to accurate reproduction of factors such as shape of gas cooling tower and gas conditions, IKEUCHI runs the simulations including actual phenomena as shown below to propose a spray nozzle layout matching the needs of each site.

[Surface mesh]

[Water droplets trajectory] [Temp. distribution]

Example of an improvement on the newly-built gas cooling tower by simulating the shift of gas flow profile caused by the inlet duct. Flue gas volume 4,300 m³N/hr Gas temperature at inlet: 600 degrees C at outlet: 160 degrees C