For Effective Use of Pneumatic Spray Nozzles

Pneumatic spray nozzles utilize a high-velocity flow of compressed air for atomizing liquids, and there are various types of pneumatic spray nozzles. Select optimal spray nozzles that meet your purpose.

Various Applications

When fine atomization is required

In cleaning process

•Cleaning with hydraulic nozzles

Puddles generated on the surface

Cleaning with pneumatic nozzles

Atomized air blows off puddles

Precise cleaning with high-impact, high-velocity fine fog spray using air

Fine spray droplets

Advantages of Pneumatic Spray Nozzles

Excellent atomizing performance

Pneumatic spray nozzles are capable of producing fine atomization with a mean droplet diameter of 10 µm or less.^{*1}

*1 See pages 7–8 for droplet sizes and their measuring methods.

Large turn-down ratio

Pneumatic spray nozzles have a large turn-down ratio of spray flow rate^{*2} with little variation in spray droplet size and flow distribution, which is ideal for spray flow adjustable nozzles.

*2 Spray flow rate is expressed as spray capacity in this catalog. See page 4 for the turn-down ratio.

Large free passage diameter

Pneumatic spray nozzles have a larger free passage diameter than hydraulic spray nozzles, which is effective for clog prevention.

Liquid

When a large turn-down ratio is required

One spray nozzle can cover a wide range of spray capacity.

•Contact us for HACCP compliance.

Advantages of Pneumatic Spray Nozzles

Air-liquid Mixing Systems for Excellent Atomization

There are three types of air-liquid mixing systems for atomizing liquid: internal mixing type, external mixing type, and impinging type, depending on the mixing method of compressed air and liquid.

Internal Mixing Type

Compressed air and liquid are mixed inside the nozzle and atomized. Generally, this type has excellent atomizing performance. Internal mixing type is further classified into the following three types.

Inner air type

Inside the nozzle, compressed air flows in the center while liquid flows along its circumference. Its larger liquid passage diameter effectively prevents clogs.

Outer air type

Inside the nozzle, liquid flows in the center while compressed air flows along its circumference. This common type can have a larger orifice size, resulting in slightly coarser spray droplet sizes.

Pre-mix type

Air and liquid mix before reaching the orifice. Even at low air-water ratios, droplet velocity accelerates prior to the orifice, resulting in a stronger impact force. Additionally, this nozzle type has a larger turn-down ratio, making it suitable for cooling objects at high temperatures.

External Mixing Type

Compressed air and liquid are mixed outside the nozzle. In general, this type of nozzle is highly resistant to clogging.

External mixing type is further classified into the inner air type and the outer air type.

Impinging Type

Air-stream entraining fine fog jets out from the nozzle and impinges against another air-stream of the same property, shattering the fog into even finer, more uniform droplets. This is IKEUCHI's unique system.

Turn-down Ratio

The turn-down range is a range of adjustable spray capacity, and the ratio of its minimum to maximum spray capacity is referred to as the turn-down ratio.

To cover a wide range of spray capacity with a single nozzle, it is not practical to use a hydraulic spray nozzle because it requires a huge pressure increase (1) in the figure).

Pneumatic spray nozzles are adjustable in both air and liquid pressures, allowing adjustment of the spray capacity with minimum pressure change (2) in the figure).

Thus, pneumatic spray nozzles are suitable for cooling combustion gases and other applications that require nozzles with small spray droplet sizes and a large turn-down ratio.

Select a pneumatic spray nozzle to obtain a large turn-down range under the same pressure range.

Air-water Ratio

Air-water ratio is the rate of air consumption divided by spray capacity. The ratio can be expressed in both volume and weight ratios. For the same nozzle, a higher air-water ratio will result in a smaller spray droplet size.

The air-water ratio in this catalog is expressed as the volume ratio unless otherwise specified.

Nozzle Selection Factors

Spray Pattern

The spray pattern refers to the cross-sectional shape of the spray and is available in cone spray (hollow cone and full cone spray), flat spray, and liquid film-like spray.

Hollow cone and full cone spray patterns are suitable for applications such as humidification, gas cooling, chemical reactions, and moisture control, while flat spray and film-like spray patterns for cooling and coating. To optimize nozzle performance and effects, it is important to select a spray pattern suited for each application.

Please note that the spray patterns of pneumatic spray nozzles deform significantly as the distance from the nozzle becomes greater.

Liquid Feeding System

There are two types of liquid feeding systems: the liquid pressure type (feeding pressurized liquid to the nozzle) and the liquid siphon type (feeding liquid sucked up by compressed air).

By changing the compressed air and liquid pressures, spray capacity can be changed over a wide range from small to large flows.

entire area

Spray capacity differs depending on liquid siphon height (H).

Measurement Standard

Each pneumatic spray nozzle series has a spray capacity inspection standard at each standard pressure. We only ship the nozzles that pass the inspection.

Spray Pressure

Each series of pneumatic spray nozzles is designed based on the standard pressure, which is either the pressure most commonly used or the pressure that maximizes the characteristics of each nozzle series. The air and liquid pressures in this catalog are measured immediately before the nozzle, using compressed air and room temperature tap water.

Spray Angle

The spray angle is defined as the angle of spray near the nozzle outlet. The flow velocity of pneumatic spray nozzles is so high that the abovementioned spray angle is maintained only near the nozzle outlet.

When designing a nozzle layout, please refer to the spray width data in the performance table of each nozzle series.

Spray Capacity

The spray capacity refers to the volume of water flow rate sprayed from the nozzle.

One of the features of pneumatic spray nozzles is their ability to produce a spray capacity as small as 0.1 L/hr (1.7 cc/min).

The numerical values of spray capacity in this catalog are based on tap water at room temperature. (The air consumption is the value under atmospheric pressure.)

Methods of Measuring Spray Droplet Diameter

Measuring method	Range of
Principle and features	measured droplet size
Immersion Sampling Method	
Droplets are collected on a glass plate coated with silicon oil and a magnified photo is taken immediately for subsequent scanning. The collected droplets remain suspended as perfect circles. This method is less affected by distance and droplet concentration. However, ultra-fine droplets are unable to break the surface tension of the oil and evaporate. This results in an average droplet size larger than the actual value.	10–5,000 μm
Laser Analyzer	
1. Laser Doppler Method	
This method forms interference fringes by crossing two laser beams. Then, the spray droplet size is calculated from the phase difference at the time of detecting scattered light, which has resulted from droplets having passed through these interference fringes, by multiple photo detectors provided at a given distance. This method is less affected by droplet concentration because each droplet is measured one by one, while enabling simultaneous measurement of droplet velocity. However, measurement is only possible at a single point in the spray.	0.5–2,500 μm
2. Fraunhofer Diffraction Method	
A laser beam scatters at the surface of droplets to form a diffracted image behind the droplets due to the interference of the scattered light (Fraunhofer diffraction). This method can simultaneously measure all droplets on the laser beam path, but if the droplet concentration is too high, the laser beam once scattered may be scattered again by other droplets (multiple scattering). This phenomenon may cause the measured droplet size to be smaller than the actual droplet size.	1–1,000 μm
Shadowgraph Method	
Backlight illuminated shadows of droplets in various sizes are photographed and converted to circular shapes, from which the droplet diameters are calculated. This method enables the measurement of non-spherical coarse droplets that cannot be measured by the laser analyzer. However, it is not suitable for measuring fine droplets due to the	10-8.000

μm

Photographed image

However, it is not suitable for measuring fine droplets due to the low magnification of the camera. Also, when the droplets are dense, the overlapped multiple droplets could be measured as a single droplet, thus its droplet size may appear larger than the actual size.

7

Mean Droplet Diameter

Mean droplet diameter is one of the important factors in selecting nozzles and designing nozzle-related equipment.

Generally, the following average value models are used for mean droplet sizes:

- Sauter Mean Diameter $(\bar{d}_{32}) \cdots \sum nd^3 / \sum nd^2$
- Volume Mean Diameter (dv) ·······(∑nd³/∑n)^{1/3}
- Mass Median Diameter (Dv.5) $\cdots f_{0}^{Dv.5} dv/v =$

 $f_{\rm Dv.5}^{\circ}$ dv/v = 50%

In chemical processes such as cooling, evaporation, combustion and drying, the surface-to-volume ratio, i.e. specific surface area, is used to determine the efficiency. Because the rate of reaction is influenced more by a small number of large droplets than a large number of small droplets, it is advisable to use the Sauter Mean Diameter as a representative value for the droplet size.

The Sauter Mean Diameter is used most often and is the one used in this catalog.

Example of calculation of Sauter mean diameter

Range (µm)	Median d (µm)	Quantity n	nd²	nd³
0–100	50	1,664	4,160,000	208,000,000
100–200	150	2,072	46,620,000	6,993,000,000
200–300	250	444	27,750,000	6,937,500,000
300–400	350	161	19,722,500	6,902,875,000
400–500	450	73	14,782,500	6,652,125,000
500-600	550	35	10,587,500	5,823,125,000
600–700	650	17	7,182,500	4,668,625,000
700–800	750	4	2,250,000	1,687,500,000
	Total	4,470	133,055,000	3.987275×10 ¹⁰

$$\overline{d}_{32} = \frac{\sum n d^3}{\sum n d^2} = 300 \ \mu m$$

Correlation Between Measuring Methods in Droplet Diameter

Results will differ, depending on the method used to measure. If the Sauter mean droplet diameter measured with the immersion sampling method equals 1, as relative coefficient number, this value will be different when measured with other methods, as shown on the right.

Measuring method Nozzle type	Immersion sampling method	Fraunhofer diffraction method	Laser Doppler method	Shadow- graph method	
Hydraulic spray nozzles	4	0.45	07.00	0.8–0.9	
Pneumatic spray nozzles	I	0.45	0.7-0.9		

Evaluation of Droplet Diameter

Good care must be exercised in evaluating droplet diameters because droplet diameters differ depending on each measuring method as described above.

In comparing spray droplet diameters of different spray nozzles, a standardized measuring method should be used. Likewise, when using the laser method, measurement distance, droplet concentration, etc. should be as consistent as possible.

Too high a concentration may cause multiple scattering both in the Fraunhofer laser diffraction method and in the laser Doppler method, which would not allow a correct evaluation of the droplet diameter.

Therefore, it is desirable to avoid measuring near the nozzle, and measure at a given distance from the nozzle.

Droplet diameters at various distances from the nozzle

At 0.49 MPa air pressure and 0.46 MPa liquid pressure

Pneumatic Spray Nozzle Lineup

Air type	Nozzle type	Spray pattern	Liquid feeding system	Series	Air-liquid mixing system	
		Eleterray	Liquid pressure	BIMV, CBIMV, SCBIMV		
	Low flow rote	Fial Spray	Liquid siphon	BIMV-S, CBIMV-S, SCBIMV-S		
	LOW NOW Fate		Liquid pressure	BIMK, CBIMK	internal mixing	
		Hollow cone spray	Liquid siphon	BIMK-S, CBIMK-S		
		Full cone spray	Liquid pressure	BIMJ, CBIMJ, SCBIMJ		
			Liquid pressure	YYA	External mixing type	
		Flat spray		SETOV		
				SETOV-C		
	Clog-resistant		Liquid procesure 9	SETOJet	External mixing	
	fine fog nozzles			SETOJet-R		
Compressed air		Full cone spray	Liquid siphon	SETO-SP		
				SETO-SD	External mixing outer air type*4	
	Medium capacity fine fog nozzles	Full cone spray	Liquid pressure	AKIJet	Internal mixing & Impinging type	
	Large capacity fine fog nozzles	Full cone spray	Liquid pressure	GSIMII	Internal mixing outer air type	
				DOVEA		
	Comi final	Flat aprov		DDA		
	Semi-fine/	Flat spray	Liquid procesure	DOVVA-G	Internal mixing	
	Semi-coarse log hozzies			VVEA, INVVEA	pre-mix type	
		Full cone spray		JJA		
	Slit laminar nozzles	Film-like spray		PSN		
Blower air	Ultra-low	Flat spray		BAVV	Internal mixing inner air type	
	pressure nozzles	Full cone spray		LSIM	Internal mixing outer air type	
Steam	Steam driven nozzles	Full cone spray	Liquid pressure	JOKIJet	External mixing outer air type	

Note: Check the respective product pages for the air and liquid pressures (measurement conditions of the above) and other details including adaptor type. *1) Sauter mean diameter, measured by laser Doppler method unless otherwise specified. *2) Measured by the Immersion sampling method. *3) Measured by the Fraunhofer

Spray Nozzle Materials

The standard and optional materials available for nozzles are shown in the material section of each nozzle series, using the material codes listed below.

If you need a specific nozzle material that is not mentioned in each series page, please contact us.

	Metals
[Material code······	··· Material]
S303·····	··· Stainless steel 303
S304·····	··· Stainless steel 304
S316·····	··· Stainless steel 316
S316L	··· Stainless steel 316L
S321	··· Stainless steel 321
SCS13	···· Die-cast stainless steel equivalent to S304
SCS14	····Die-cast stainless steel equivalent to S316

Oil-free options are available at additional cost. Contact us for details.

Plastics
[Material code······· Material]
PP ······Polypropylene
PPS ······Polyphenylene sulfide
PVC ······Polyvinyl chloride
HTPVC ······ Heat-treated polyvinyl chloride
PTFE Polytetrafluoroethylene
PA·····Polyamide
PE·····Polyethylene

Rubbers
[Material code······· Material]
NBR······Nitrile rubber
FKM······Fluororubber
FEPM Tetrafluoroethylene-propylene rubber

Mean droplet diameter*1 (µm)	Spray capacity	Unit	Spray angle (°)	Air consumption (L/min, Normal)	Adaptor type	Page
	0.25–107		110, 80, 45	2.6–245	NT	13, 32, 41
	0.1–4.7]	80	3.75–92		15, 37, 42
20–100	2.0–107	L/hr	60	13–245	NDB, UNDB,	17, 34
	1.8–4.7]	60	27–92	SINB, USINB,	19, 38
	0.25–107		70, 20	2.6–245	3PB, 03PB	21, 35, 41
15–30	2.2-10.0		80	27–45	_	59
15–40	1.7–10.6]	65, 55	27–75	T, SN, SP	53
_	1.2–25.9		_	33–151	SP	55
20–60	2.0–111	1/67	_	38–290	Т	46
15–40	2.0–26.4		_	36–200	Т	48
15–25	1.5–5.1]	_	18–30	CSP	51
15–25	0.9–26.4		_	36–200	_	57
10–120* ²	10–450	L/hr	-	340–2,150	Т, Н	92
40-80	15–2,000	L/hr	60, 20	150–4,000	T, SN, flange connection	61
50–200* ³	0.42–40		110, 95, 70, 55	30–630	Т	70
15–200* ³	0.14–57.3]	125, 110, 100, 80, 75	17–610	Т	75
80–120	1–25		70, 55	100–1,700	Flange connection	81
20–400	0.23-3.0		80, 60	14–128	T* ⁵	85, 87
150–650* ²	1.1–24		—	70–720	Flange connection	78
_	8–28		—	520–1,700	—	89
30–100	9.0–123	l /br	60	76–254	Т	95
40-80	0–1,000		20	1,500–6,000	Flange connection	97
40-200*2	10–1,200	L/hr	-	_	Flange connection	101

diffraction method. *4) Nozzle code 07503R-I+SD is internal mixing outer air type. *5) Exclusive of INVVEA Header.

Table of Chemical and Heat Resistance

Materials		Metals			Plastics						Rubbers				
Items		S303	S304	S316 S316L	S321	PP	PPS	PVC	HTPVC	PTFE	PA	PE	NBR	FKM	FEPM
	Hydrochloric acid	×	×	×	×	0	0	0	0	0	×	0	×	0	0
	Concentrated hydrochloric acid	×	×	×	×	\bigtriangleup	0	0	0	0	×	0	×	0	0
	Sulfuric acid (35%)	×	×	×	×	0	0	0	0	0	×	0	×	0	0
e	Concentrated sulfuric acid	×	×	0	0	×		0	0	0	×	\bigtriangleup	×	0	0
stano	Nitric acid (35%)	0	0	0	0	×		0	0	0	\bigtriangleup	0	×	0	0
resis	Concentrated nitric acid	\bigtriangleup	0			×	×	×	×	0	\bigtriangleup	×	×	0	0
ical	Acetic acid		0	0	0	0	0	0	0	0	\bigtriangleup	\bigtriangleup	0	0	0
nem	Sodium hydroxide (caustic soda)	0	0	0	0	0	0	0	0	0	0	0	0	\bigtriangleup	0
Ö	Aqueous ammonia	0	0	0	0	0	0	0	0	0	0	0	0	×	×
	Acetone	0	0	0	0	0	0	×	×	0	0	×	×	×	×
	Trichloroethylene	0	0	0	0	\bigtriangleup	0	×	×	0	0	\bigtriangleup		0	0
	Ethyl alcohol	0	0	0	0	0	0	0	0	0	\bigtriangleup	\bigtriangleup	0	0	0
ance	Suitable (°C)	400	400	400	400	80	170	40	50	100	130	60	90	150	150
Heat resist	Short-term use only (°C)	800	800	800	800	90	180	50	70	150	230	80	120	200	200

 \bigcirc : Suitable \bigtriangleup : Possible for short term use \times : Unusable

Note: The heat resistance (operating temperature limit) of spray nozzles varies widely depending on the operating conditions, environment, liquid sprayed, etc.

• Spray nozzle specifications are shown in the respective tables.

•Figures showing simplified spray pattern and distribution

		Perform	nance data	table			
•Spray angle code (110) •Air consumption Ir a	code (02) istimated air consur n this example, air o t air pressure 0.4 M	es. per minute Pa.	•Spray width (280 mm at a and liquid p •Appr diam (N/A type Liquid	at the specified air pressure of 0 ressure of 0.1 M ox. minimum pa teters for each f for tip orifice in ex nozzles. See page d Mixing Systems	pressures .2 MPa 1Pa) assage low channel ternal mixing ≥ 3 for Air-)		
Spray Air Air angle consumption pressure	Spray capaci	Liquid pressu	nsumption (L/min	Normal)	Spray width*3 (mm)	Mean droplet dia. (µm) Laser	e passage meter (mm)
code code (MPa)	Liquid Air Liquid	Air Liquid A	Air Liquid Air	Liquid Air (0.1) 0.15 0.25	Doppler Tip	Liquid Air
02 0.3 0.4	2.2 14 5.3 1.0 20 2.5 1.4	11 - - 19 4.6 1 (25) 2.3 2	7 8.3 12 4 4.0 23	14.3 7 2 6.3 20	280 340 — 220 250 420 — 230 340	20-100 0.2	0.9 0.7
04 0.2 0.4	4.5 25 9.5 2.0 36 4.7 — 28	20 17.0 13 35 8.5 3' 45 4.8 4'	3 — — 1 13.1 27 4 7.7 41	- 3 19.6 20 2 11.4 37 -	300 360 — 230 270 430 — 250 350	20- 100 0.3	0.9 0.9
110 075 0.2 0.4 0.4 0.4	8.7 51 18.4 4.0 74 8.8	42 33.3 29 71 15.5 64	9 — — 4 24.3 54 14.8 82		320 380 — 240 300 450 — 270 370	20- 100 0.5	1.2 1.4
	the encoified		(0.0)	' — 3 2 77 2	340 400 — 270 320 470 280 <u>380</u>	20- 100 0.8	1.8 1.9
 Calculated spray capacity all pressures. In this example, s 4.7 liters per hour at air press and liquid pressure 0.15 MP 	spray capacity is sure 0.3 MPa a.	•At air p liquid p spray p (with co	pressure of 0.2 f pressure of 0.3 f pattern does not parse droplets,	viPa and MPa, defined t develop wheezing, etc.)	, ,	Range of Saute diameters mea by laser Dopple	er mean sured er method

Description of thread size and type

-		• •
Thread type	ISO	Our thread
Thread type	standard	code
Male tapered pipe threads	R1/4	1/4M
Female tapered pipe threads	Rc1/4	1/4F

Description of flange size

Pipe	Our flange	
A (nominal diameter)	B (inch)	description
10	3/8	3/8T10
15	1/2	1/2T10
20	3/4	3/4T10
25	1	1T10
32	1 ¹ /4	1*1/4T10
40	11/2	1*1/2T10
50	2	2T10
65	2 ¹ / ₂	2*1/2T10
80	3	3T10
90	31/2	3*1/2T10
100	4	4T10

Flanges shall be in accordance with JIS 5K and JIS 10K. (JIS: Japanese Industrial Standards)

Flange JIS 5K is described as "T5" instead of "T10" in the above description.

■Conversion of Units

Length	μm	mm	cm	m	in	ft
	1	1×10⁻³	1×10 ⁻⁴	1×10⁻ ⁶	3.94×10 ⁻⁵	3.28×10⁻⁵
	1×10 ³	1	0.1	1×10⁻³	3.94×10 ⁻²	3.28×10⁻³
	1×10 ⁴	10	1	1×10 ⁻²	3.94×10 ⁻¹	3.28×10 ⁻²
	1×10 ⁶	1×10 ³	100	1	3.94×10	3.28
	2.54×10⁴	25.4	2.54	2.54×10 ⁻²	1	8.33×10 ⁻²
	3.05×10⁵	3.05×10 ²	3.05×10	3.05×10 ⁻¹	12	1

■Others

Viscosity	1P = 100 cP 1St = 100 cSt
Weight	1 kg ≈ 2.21 lb 1 lb ≈ 0.45 4kg
Temperature	[°F] ≈ ([°C] × ⁹ / ₅) + 32 [°C] ≈ ⁵ / ₉ × ([°F] - 32)

■Water flow rate and proper pipe size

Nominal size		Steel	pipe	Flow rate (L/min) when pressure loss is			
А	В	Inside Outside dia. (mm) dia. (mm)		0.01–0.03MPa per pipe length of 10m			
6A	¹ /8B	6.5	10.5	1.3–2.2			
8A	1/4B	9.2	13.8	3-5.2			
10A	³ /8B	12.7	17.3	7–12			
15A	¹ /2B	16.1	21.7	12–21			
20A	³ /4B	21.6	27.2	22-38			
25A	1B	27.6	34.0	38-65			
32A	1 ¹ /4B	35.7	42.7	70-120			
40A	1 ¹ /2B	41.6	48.6	120-210			
50A	2B	52.9	60.5	215-370			
65A	21/2B	67.9	76.3	410-700			
80A	3B	80.7	89.1	680-1,200			
100A	4B	105.3	114.3	1,200-2,100			
125A	5B	130.8	139.8	2,100-3,600			
150A	6B	155.2	165.2	3.300-5.700			

Area	Cm ²	m²	in ²	ft²	
	1	1×10 ⁻⁴	0.155	1.08×10 ⁻³	
	1×104	1	1.55×10 ³	10.8	
	6.45	6.45×10 ⁻⁴	1	6.94×10⁻³	
	9.30×10 ²	9.30×10 ⁻²	1.44×10 ²	1	

	cm ³	L (Liter)	m³ (kL)	ft ³	Imperial gal.	U.S. gal.
Volume	1	1×10⁻³	1×10⁻⁵	3.53×10⁻⁵	2.2×10⁻⁴	2.64×10 ⁻⁴
	1×10 ³	1	1×10⁻³	3.53×10 ⁻²	0.220	0.264
	1×10 ⁶	1×10 ³	1	35.3	220	264
	2.83×10 ⁴	28.3	2.83×10 ⁻²	1	6.23	7.48
	4.55×10 ³	4.55	4.55×10⁻³	0.16	1	1.2
	3.79×10 ³	3.79	3.79×10 ⁻³	0.134	0.833	1

	MPa	bar	kg/cm ²	psi (lb/in²)	atm	mmHg	mmH₂O (mmAq)
	1	10	10.2	145	9.87	7.5×10 ³	1.02×10⁵
	0.1	1	1.02	14.5	0.987	750	1.02×10 ⁴
Pressure	0.098	0.981	1	14.2	0.968	736	1×10 ⁴
11000010	6.89×10⁻³	0.069	0.070	1	0.068	51.7	703
	0.101	1.01	1.03	14.7	1	760	1.03×10 ⁴
	1.33×10 ⁻⁴	1.33×10⁻³	1.36×10⁻³	0.019	1.32×10⁻³	1	13.6
	9.81×10 ⁻⁶	9.81×10⁻⁵	1×10⁻⁴	1.42×10⁻³	9.68×10⁻⁵	0.074	1

	L/min	m³/min	m³/hr	in³/hr	ft³/hr	Imperial gal./min	U.S. gal./min
	1	1×10⁻³	0.06	3.66×10 ³	2.12	0.22	0.264
	1×10 ³	1	60	3.66×10 ⁶	2.12×10 ³	220	264
Flow rate	16.7	0.017	1	6.10×10 ⁴	35.3	3.67	4.40
1 Iow rate	2.73×10 ⁻⁴	2.7×10 ⁻⁷	1.64×10⁻⁵	1	5.79×10 ⁻⁴	6.01×10⁻⁵	7.22×10⁻⁵
	0.472	4.72×10 ⁻⁴	0.028	1.73×10 ³	1	0.104	0.125
	4.55	4.55×10⁻³	0.273	1.66×10⁴	9.63	1	1.20
	3.79	3.79×10⁻³	0.227	1.39×10 ⁴	8.02	0.833	1