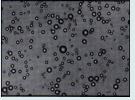

構成機器	用途	備考				
①霧+ファン冷房ユニット	キルンシェルの冷却	[機器名称]COOLJetter®(クールジェッター) 移動式(手動)、噴霧方向可変(手動) 台車式および吊り下げ式から選択可				
②加圧ポンプユニット	冷却水の圧送	バッファタンクおよび加圧ポンプにて構成 異常警報などのフェールセーフ機能付き				
③自動洗浄ろ過フィルター	冷却水のろ過	[機器名称] ARSフィルター (アースフィルター) 冷却水中の不純物除去による①のノズル詰りを防止 フィルター自身の堆積異物をジェット噴射式洗浄により自動で除去、フィルター目詰まりを低減				
④温度計測ユニット (オプション)	シェルの温度計測	放射温度計による温度計測にて、キルン進行方向の温度分布 のモニター表示が可能な可視化および制御機能付き				
⑤制御盤 (オプション)	冷却制御	④での計測結果をフィードバックし、ファン送風量(イン バーター)および冷却水景(調整分)た中動制御				


「微霧とは?」

①微霧とは噴霧粒子径の小さい霧(平均粒子径10~100µm)のことです。

②小さな粒子は、空気中で容易に蒸発し、気化熱を奪うので、効率の良い 冷却が可能です。未蒸発の粒子があっても、冷却物表面で瞬時に蒸発する ため、物を濡らしません。

粒子小

お問い合わせは下記へどうぞ

UBE 宇部興產機械株式会社

●窯業システムGr

〒755-8633 山口県宇部市大字小串字沖の山1980番地 TEL:0836-22-6214 FAX:0836-22-7615

●冷却事業部

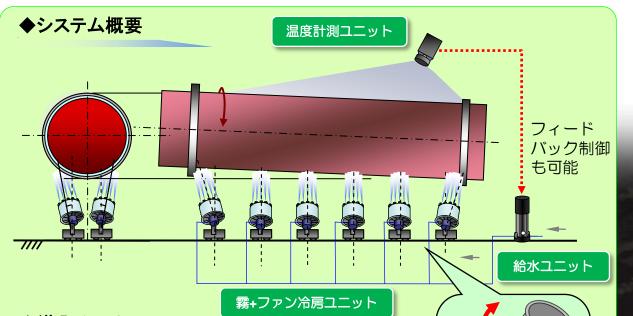
〒550-0011 大阪市西区阿波座1丁目15-15第1協業Lin TEL:06-7661-7669 FAX:06-6538-4023

キルン微霧冷却システム

UBE 宇部興産機械株式会社 霧のいけうち。

宇部興産株式会社特許取得済

超微霧 微霧


細霧

微霧を使ったキルンの シェル冷却装置です。 キルンの安定運転を お手伝いします。

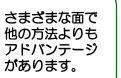
10µm以下 並みの雨~スコール 10~100μm 霧雨 1.0mm以上 100~300μm しとしと雨 0.3~1.0mm 100ミクロンまでの非常に微細な霧「微霧」を噴霧するため 未蒸発(ドレン)の発生がなく、周辺環境の汚染がありません

中霧

上下左右に稼動

◆導入メリット

- 1) キルンシェルおよび耐火煉瓦の延命化
- 2) キルンの長時間連続安定運転を実現
- 3) コーチングの安定化
- 4) キルンシェルの温度コントロールが可能
- 5) 「微霧」だから未蒸発水がなく、周辺環境の汚染解消
- 6) 天候の変化にフレキシブルに対応可能


微霧と送風効果により キルンを効果的に冷却します。

各種冷却方法との比較

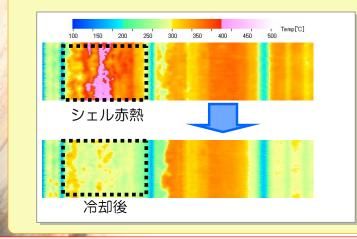
冷却方		冷却 性能	全体 冷却	部分 冷却	温度制御	延命効果	環境 影響	特徵
水冷		0	0	×	×	Δ	×	・放射温度計での温度測定ができない・部分的な散水が困難・常時水浸しによる環境悪化
定置式ファンダ		Δ	۵	×	0	4	0	・冷却性能不足・吹き出し口風量バランスの安定確保が困難・部分的な風量の増加ができない
ローカルファン *ルン	200	Δ	Δ	0	0	Δ	0	・冷却性能不足 ・風の当たっている部分しか 冷却効果がない
微霧冷却	000	0	0	0	0	0	0	・霧の気化熱を利用し、 キルン全体を効率的に冷却 ・稼働台数と水量により部分的に 温度をコントロール

「コーチングの役割」

- ①コーチングは原料が煉瓦面に溶融付着したものです。
- ②煉瓦面が被覆されることで、煉瓦の溶損を防ぐことができます。
- ③表面が凸凹になることにより、原料の混合を良好にし、均一に加熱します。
- ④コーチングの持つ大きな熱容量により、焼成が容易となります。

温度変動による

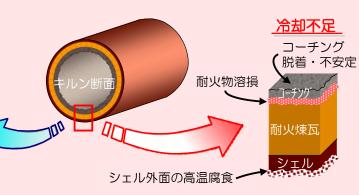
設備ダメージを


軽減できます。

水冷式から微霧冷却 システム採用により 環境も改善されました。

低温腐食

冷却不足 霧の軌跡 定置式ファンダクト 局所的冷却 上面 下面はもちろん上面まで、 キルン全体を均一に冷却



微霧冷却

設備の延命効果

冷却効果シミュレーション

過冷却 コーチング 酸結露による 讨火煉瓦

📂 温度コントロールによる過冷却・冷却不足の抑制

環境改善

キルン下部の機器のメンテナンス性改善や 油流出などの環境事故抑制にも効果があります